
1

An Overview of Trilinos

Jonathan Hu
 Sandia National Laboratories

Eleventh DOE ACTS Collection Workshop
 August 19th, 2010

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Main Title 32pt

The acknowledgement statement MUST be used on the title slide�
of all presentation material distributed outside of Sandia.

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

3

Outline of Talk

  Background / Motivation.

  Trilinos Package Concepts.

  Whirlwind Tour of Trilinos Packages.

  Getting Started.

  Concluding remarks.

  Hands On Tutorial from 3:45-5:45pm this afternoon

4 Who are the developers?
(a very incomplete list)

Chris Baker
Develops: Anasazi, RBGen, Tpetra

Ross Bartlett
Leads: Thyra and Stratimikos
Develops: Rythmos

Pavel Bochev
Leads: Intrepid

Paul Boggs
Develops: Thyra

Eric Boman
Leads: Isorropia
Develops: Zoltan

Cedric Chevalier
Develops: Zoltan, Isorropia

Todd Coffey
Leads: Rythmos

Eric Cyr
Leads: Teko

David Day
Develops: Komplex and Intrepid

Karen Devine
Leads: Zoltan
Develops: Isorropia

Clark Dohrmann
Develops: CLAPS

Carter Edwards
Leads: ThreadPool, Shards, PhdMesh
Develops: STK

Michael Gee
Develops: Moertel, ML

Glen Hansen
Leads: Moertel

Dave Hensinger
Leads: PamGen

Bob Heaphy
Leads: Trilinos SQA

Mike Heroux
Trilinos Project Leader
Leads: Epetra, AztecOO, Kokkos, Komplex,
 IFPACK, Thyra, Tpetra
Develops: Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Develops: Anasazi

Robert Hoekstra
Leads: EpetraExt
Develops: Epetra, Thyra, Tpetra

Mark Hoemmen
Develops: Anasazi

Russell Hooper
Develops: NOX

Vicki Howle
Leads: Meros
Develops: Belos and Thyra

Jonathan Hu
Develops: ML

Sarah Knepper
Develops: Komplex

Joe Kotulski
Leads: Pliris

Robert Kirby
Develops: Intrepid

Denis Ridzal
Leads: Aristos and Intrepid

Lee Ann Riesen
Develops: Zoltan, Isorropia

Damian Rouson
Leads: Morfeus
Develops: ForTrilinos and Ctrilinos

Chris Siefert
Develops: ML, Ifpack

Greg Sjaardema
Develops: Trios, STK

Andrew Salinger
Leads: LOCA
Develops: Trikota

Bill Spotz
Leads: PyTrilinos
Develops: Epetra, New_Package

Heidi Thornquist
Leads: Anasazi, Belos, RBGen, and Teuchos

Ray Tuminaro
Leads: ML and Meros

Jim Willenbring
Develops: Epetra and New_Package.
Trilinos library manager

Alan Williams
Leads: Isorropia
Develops: Epetra, EpetraExt, AztecOO, Tpetra
 Tifpack

Michael Wolf
Develops: Zoltan, Isorropia

Pat Knupp
Develops: Mesquite

Jason Kraftcheck
Develops: Mesquite

Rich Lehoucq
Develops: Anasazi and Belos

Nicole Lemaster
Leads: CTrilinos, ForTrilinos

Kevin Long
Leads: Thyra, Sundance
Develops: Teuchos

Karla Morris
Develops: ForTrilinos, Ctrilinos, Morfeus

Kurtis Nusbaum
Leads: Optika

Ron Oldfield
Leads: Trios

Roger Pawlowski
Leads: NOX, Phalanx
Develops: Shards, LOCA

Brent Perschbacher
Framework manager

Kara Peterson
Develops: Intrepid

Eric Phipps
Leads: Sacado, Stokhos
Develops: LOCA, NOX

Siva Rajamanickam
Develops: Zoltan

5

Sandia Physics Simulation Codes

  Element-based
  Finite element, finite volume,

finite difference, network, etc…

  Large-scale
  Billions of unknowns

  Parallel
  MPI-based SPMD
  Distributed memory

  C++
  Object oriented
  Some coupling to legacy Fortran

libraries

Fluids Combustion

Structures
Circuits

Plasmas

MEMS

6

Motivation For Trilinos
  Sandia does LOTS of solver work.
  10 years ago …

  Aztec was a mature package. Used in many codes.
  FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many

other codes were (and are) in use.
  New projects were underway or planned in multi-level

preconditioners, eigensolvers, non-linear solvers, etc…
  The challenges:

  Little or no coordination was in place to:
•  Efficiently reuse existing solver technology.
•  Leverage new development across various projects.
•  Support solver software processes.
•  Provide consistent solver APIs for applications.

  ASCI was forming software quality assurance/engineering (SQA/
SQE) requirements:

•  Daunting requirements for any single solver effort to address alone.

Trilinos – A High Level View
  Trilinos is a framework

  Public release 10.4 contains 47 numerical libraries, called “packages”
  Packages

•  Are developed by domain experts
•  Are often interoperable
•  May have originated within Trilinos, or started separately (e.g., Zoltan)

  Why it’s good to be a package
  Software version control (git), unified build system (cmake)
  Automated nightly and integrated app testing
  Mailing lists (dev, user, regression, announce, checkin)
  Autonomy (R&D, coding style, testing, documentation, etc.)

  What capabilities does Trilinos provide for my app?
  Basic parallel linear algebra
  Solvers, AD, meshing, discretizations, optimization, load-balancing, etc.

•  Capabilities all developed and supported by domain experts

  Unified abstract API
  Lots more on capabilities to come …

7

8

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1•fh

Algorithms

physics

computation

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain dec.

Mortar methods

Time domain
Space domain

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

  Beyond a “solvers” framework
  Natural expansion of capabilities to satisfy

application and research needs

  Discretization methods, AD, Mortar methods, …

9

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Spatial Discretizations Intrepid, Phalanx, Shards, Pamgen, Sundance,

Mesquite, STK, Moertel

Time Integration Rythmos

Optimization Optimization (SAND) MOOCHO, Aristos

Methods Automatic Differentiation Sacado

Core

Linear algebra objects Epetra, Jpetra, Tpetra

Abstract interfaces Thyra, Stratimikos, RTOp, Piro

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils

GUIs Optika

Preconditioners

Multigrid methods ML

Domain decomposition methods CLAPS, IFPACK

ILU-type methods AztecOO, IFPACK, TIFPACK

Block preconditioners Teko, Meros

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Nonlinear system solvers NOX, LOCA

Iterative eigenvalue solvers Anasazi

Stochastic PDEs Stokhos

Trilinos Strategic Goals

•  Scalable Computations: As problem size and processor counts increase,
the cost of the computation will remain nearly fixed.

•  Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the problem
fails and provide a reliable measure of error.

•  Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

•  Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

•  Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web, and
from the desktop to the latest scalable systems.

•  Universal Solver RAS: Trilinos will be:
–  Reliable: Leading edge hardened, scalable solutions for each of these

applications
–  Available: Integrated into every major application at Sandia
–  Serviceable: Easy to maintain and upgrade within the application

environment.

Algorithmic
Goals

Software
Goals

Target Platforms: Any and All
(Now and in the Future)

  Desktop: Development and more…
  Capability machines:

  Redstorm (XT3), Clusters
  Roadrunner (Cell-based).
  Multicore nodes.

  Parallel software environments:
  MPI of course.
  UPC, CAF, threads, vectors,…
  Combinations of the above.

  User “skins”:
  C++/C, Python
  Fortran.
  Web, CCA.

12

Whirlwind Tour of Packages
Frequently Requested Discretizations Methods Core Solvers/

Preconditioners

13

  Portable utility package of commonly useful tools:

  ParameterList class: key/value pair database, recursive capabilities.
  LAPACK, BLAS wrappers (templated on ordinal and scalar type).
  Dense matrix and vector classes (compatible with BLAS/LAPACK).
  FLOP counters, timers.
  Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
  Reference counted pointers / arrays, and more…

  Takes advantage of advanced features of C++:
  Templates
  Standard Template Library (STL)

  Teuchos::ParameterList:
  Allows easy control of solver parameters.
  XML format input/output.

POCs: Roscoe Barlett, Mike Heroux {rabartl,maherou}@sandia.gov

Teuchos

14

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
  Petra provides a “common language” for distributed

linear algebra objects (operator, matrix, vector)

  Petra1 provides distributed matrix and vector services.
  Exists in basic form as an object model:

  Describes basic user and support classes in UML,
independent of language/implementation.

  Describes objects and relationships to build and use
matrices, vectors and graphs.

  Has 3 implementations under development.

15

Epetra – Distributed Linear Algebra

  Epetra (Essential Petra):
  Current production version.
  Restricted to real, double precision arithmetic.
  Uses stable core subset of C++ (circa 2000).
  Interfaces accessible to C and Fortran users.
  Global index size limited to 32-bit integers

 Many sparse matrix formats: CSR, FE-CSR, MSR, VBR, JD
 Common abstract matrix interface: Epetra_RowMatrix
 Vector, MultiVector, Graphs
 Serial & MPI support
 Maps - parallel data management

 Mature, bug-fixes only POCs: Mike Heroux, Alan Williams {maherou,william}@sandia.gov

16

EpetraExt: Extensions to Epetra

  Library of useful classes not needed by everyone

  Most classes are types of “transforms”.
  Examples:

  Graph/matrix view extraction.
  Epetra/Zoltan interface.
  Explicit sparse transpose.
  Singleton removal filter, static condensation filter.
  Overlapped graph constructor, graph colorings.
  Permutations.
  Sparse matrix-matrix multiply.
  Matlab, MatrixMarket I/O functions.
  Wrapper for PETSc aij matrices.

  Most classes are small, useful, but non-trivial to write.

Developers: Robert Hoekstra, Alan Williams, Mike Heroux, many others

17

Tpetra – Distributed Linear Algebra
(Templated)

 Tpetra (Templated Petra):
  C++, successor to Epetra.
  Templated scalar and ordinal fields.
  Uses namespaces, and STL: Improved usability/efficiency.

  Similarities to Epetra
  Sparse parallel matrices: CSR, VBR
  MultiVector
  Graphs

  Important differences
  Templated scalar/ordinal fields
  Handles only intra-node communication.

•  Inter-node communication is handled by Kokkos package
–  Multicore, GPU

  Allows for mixed MPI/threading, MPI/GPU

POCs: Chris Baker bakercg@ornl.gov
 Mike Heroux, Alan Williams {maherou,william}@sandia.gov

18

Belos
  Iterative linear solver library, written in templated C++.

  Provide a generic framework for developing iterative algorithms for solving large-scale,
linear problems.

  Algorithm implementation is accomplished through the use of traits classes and abstract
base classes:
  Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
  Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
  Status tests: Belos::StatusTest, Belos::StatusTestResNorm
  Iteration kernels: Belos::Iteration
  Linear solver managers: Belos::SolverManager

  Krylov methods for single systems Ax=b
  Simultaneously solved systems w/ multiple-RHS: AX = B
  Sequentially solved systems w/ multiple-RHS: AXi = Bi , i=1,…,t
  Sequences of multiple-RHS systems: AiXi = Bi , i=1,…,t

  Many advanced methods for these types of linear systems
  Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
  “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
  Recycling solvers: recycled Krylov methods [Parks, et al.]
  Restarting techniques, orthogonalization techniques, …

POCs: Heidi Thornquist, Mike Parks, Rich Lehoucq
 {hkthorn,mlparks,rblehou}@sandia.gov

19

IFPACK: Algebraic Preconditioners
  Overlapping Schwarz preconditioners with incomplete

factorizations, block relaxations, block direct solves.

  Accept user matrix via abstract matrix interface (Epetra
versions).

  Uses Epetra for basic matrix/vector calculations.

  Supports simple perturbation stabilizations and condition
estimation.

  Separates graph construction from factorization, improves
performance substantially.

  Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

POCs: Mike Heroux, Alan Williams

20

  Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

  Challenges:
  No single solver dominates
  Different interfaces and data formats, serial and parallel
  Interface often changes between revisions

  Amesos offers:
  A single, clear, consistent interface, to various packages
  Common look-and-feel for all classes
  Separation from specific solver details
  Use serial and distributed solvers; Amesos takes care of data

redistribution
  Native solvers: KLU and Paraklete

POCs: Mike Heroux maherou@sandia.gov

Amesos

21

 : Multigrid Preconditioners
  Smoothed aggregation multigrid, domain decomposition

preconditioning, nonsymm. multigrid

  Critical technology for scalable performance of some key apps.
  ML compatible with other Trilinos packages:

  Provides internal smoothers + smoothers from Ifpack, Amesos, AztecOO
  If user data can be wrapped as Epetra_RowMatrix object (abstract

interface), ML can be applied to it.

  ML preconditioners can precondition methods in AztecOO, Belos,
Anasazi.

  Coarsening strategies: uncoupled, MIS, 3rd party graph
  Smoothers: Jacobi, SOR, Chebyshev, ILU/IC/etc.
  Problem types: Laplace, electro-magnetics, convection-

diffusion, elasticity
  Can also be used in stand-alone mode.

POCs: Ray Tuminaro, Jonathan Hu, Chris Siefert {rstumin,jhu,csiefer}@sandia.gov

22

Anasazi
  Eigensolver library, written in templated C++.

  Provides a generic framework for developing iterative algorithms for solving large-scale
eigenproblems.

  Algorithm implementation is accomplished through the use of traits classes and
abstract base classes:
  Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
  Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
  Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
  Iteration kernels: Anasazi::Eigensolver
  Eigensolver managers: Anasazi::SolverManager
  Eigenproblem: Anasazi::Eigenproblem
  Sort managers: Anasazi::SortManager

  Currently has solver managers for three eigensolvers:
  Block Krylov-Schur
  Block Davidson
  LOBPCG

  Can solve:
  standard and generalized eigenproblems
  Hermitian and non-Hermitian eigenproblems
  real or complex-valued eigenproblems

POCs: Heidi Thornquist, Rich Lehoucq, Chris Baker
 {hkthorn,rblehou}@sandia.gov, bakercg@ornl.gov

23

NOX: Nonlinear Solvers
  Suite of nonlinear solution methods

Implementation

•  Parallel

•  OO-C++

•  Independent of the

linear algebra
package!

Jacobian Estimation

•  Graph Coloring

•  Finite Difference

•  Jacobian-Free

Newton-Krylov

Broydenʼs Method
 Newtonʼs Method
 Tensor Method

Globalizations

Trust Region

Dogleg

Inexact Dogleg

Line Search

Interval Halving 

Quadratic

Cubic

Moreʼ-Thuente

http://trilinos.sandia.gov/packages/nox

POCs: Roger Pawlowski, Eric Phipps, Andy Salinger
 {rppawlo,etphipp,agsalin}@sandia.gov

24

LOCA
  Library of continuation algorithms

  Provides
  Zero order continuation
  First order continuation
  Arc length continuation
  Multi-parameter continuation (via Henderson's MF Library)
  Turning point continuation
  Pitchfork bifurcation continuation
  Hopf bifurcation continuation
  Phase transition continuation
  Eigenvalue approximation (via ARPACK or Anasazi)

POCs: Andy Salinger, Eric Phipps
 {agsalin,etphipp}@sandia.gov

25

Whirlwind Tour of Packages
Frequently Requested Discretizations Methods Core Solvers/

Preconditioners

26

Interoperable Tools for Rapid Development
of Compatible Discretizations Intrepid

Intrepid offers an innovative software design for compatible discretizations:

  allows access to FEM, FV and FD methods using a common API
  supports hybrid discretizations (FEM, FV and FD) on unstructured grids
  supports a variety of cell shapes:

  standard shapes (e.g. tets, hexes): high-order finite element methods
  arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

  enables optimization, error estimation, V&V, and UQ using fast invasive techniques
(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/D

Reconstruction

Cell Data

Reduction

Pullback: FEM

Higher order General cells

Λk

Forms
d,d*,,∧,(,)

Operations

{C0,C1,C2,C3}

Discrete forms

D,D*,W,M

Discrete ops.

POCs: Pavel Bochev, Denis Ridzal, Kara Peterson
 {pbboche,dridzal,kjpeter}@sandia.gov

PAMGEN
In-line Meshing Library

  On-the-fly parallel generation of simple meshes.
  2D/3D, quad/hex
  Can mesh cylindrical, block, tubular domains
  No interprocess communication required
  Fixed mesh-size per process easily generated for weak scaling

experiments.
  No pre-partitioned mesh files needed.
  C interface to local mesh geometry and topology as well as inter-

processor connections.

  New in Trilinos 10:
  Extended to > 2B elements

(ordinal type is user-specified).

POC: Dave Hensinger dmhensi@sandia.gov

28

Whirlwind Tour of Packages
Frequently Requested Discretizations Methods Core Solvers/

Preconditioners

29

Sacado: Automatic Differentiation

  Efficient OO based AD tools optimized for element-level computations

  Applies AD at “element”-level computation
  “Element” means finite element, finite volume, network device,…

  Template application’s element-computation code
 Developers only need to maintain one templated code base

  Provides three forms of AD
 Forward Mode:

•  Propagate derivatives of intermediate variables w.r.t. independent variables forward
•  Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

 Reverse Mode:

•  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
•  Gradients, Jacobian-transpose products (adjoints), when n > m.

 Taylor polynomial mode:

 Basic modes combined for higher derivatives.

Developers: Eric Phipps etphipp@sandia.gov
 David Gay dmg@acm.org

30

Whirlwind Tour of Packages
Frequently Requested Discretizations Methods Core Solvers/

Preconditioners

31

Thyra
  High-performance, abstract interfaces for linear algebra

  Offers flexibility through abstractions to algorithm developers

  Linear solvers (Direct, Iterative, Preconditioners)
  Abstraction of basic vector/matrix operations (dot, axpy, mv).
  Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

  Nonlinear solvers (Newton, etc.)
  Abstraction of linear solve (solve Ax=b).
  Can use any concrete linear solver library:

•  AztecOO, Belos, ML, PETSc, LAPACK

  Transient/DAE solvers (implicit)
  Abstraction of nonlinear solve.
  … and so on.

POC: Roscoe Bartlett rbbartl@sandia.gov

Stratimikos
 Defines class Thyra::DefaultLinearSolverBuilder.
 Provides common access to:

 Linear Solvers: Amesos, AztecOO, Belos, …
 Preconditioners: Ifpack, ML, …

 Reads in options through a parameter list (read from XML?)
 Accepts any linear system objects that provide

 Epetra_Operator / Epetra_RowMatrix view of the matrix
 SPMD vector views for the RHS and LHS (e.g.
Epetra_[Multi]Vector objects)

 Provides uniform access to linear solver options that can be
leveraged across multiple applications and algorithms

POC: Roscoe Bartlett rbbartl@sandia.gov

Stratimikos Parameter List and Sublists
<ParameterList name=“Stratimikos”>
 <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>
 <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
 <ParameterList name="Linear Solver Types">
 <ParameterList name="Amesos">
 <Parameter name="Solver Type" type="string" value="Klu"/>
 <ParameterList name="Amesos Settings">
 <Parameter name="MatrixProperty" type="string" value="general"/>
 ...
 <ParameterList name="Mumps"> ... </ParameterList>
 <ParameterList name="Superludist"> ... </ParameterList>
 </ParameterList>
 </ParameterList>
 <ParameterList name="AztecOO">
 <ParameterList name="Forward Solve">
 <Parameter name="Max Iterations" type="int" value="400"/>
 <Parameter name="Tolerance" type="double" value="1e-06"/>
 <ParameterList name="AztecOO Settings">
 <Parameter name="Aztec Solver" type="string" value="GMRES"/>
 ...
 </ParameterList>
 </ParameterList>
 ...
 </ParameterList>
 <ParameterList name="Belos"> ... </ParameterList>
 </ParameterList>
<ParameterList name="Preconditioner Types">
 <ParameterList name="Ifpack">
 <Parameter name="Prec Type" type="string" value="ILU"/>
 <Parameter name="Overlap" type="int" value="0"/>
 <ParameterList name="Ifpack Settings">
 <Parameter name="fact: level-of-fill" type="int" value="0"/>
 ...
 </ParameterList>
 </ParameterList>
 <ParameterList name="ML"> ... </ParameterList>
 </ParameterList>
</ParameterList>

Linear Solvers
Preconditioners

Sublists passed
on to package

code!

Top level parameters

Every parameter
and sublist is

handled by Thyra
code and is fully

validated!

Piro::Solvers

R.O.M.E

Piro::Analysis
Analysis Tools
 (black-box)

Piro::Analysis abstraction:
 Wraps Dakota, MOOCHO, OptiPack analysis

packages
Constructed with: Solver, paramList
Will make use of analytic sensitivities

Analysis Tools
 (embedded)

Model
Evaluator

Piro: Single wrapper for all solver and
analysis packages

Piro::Solver abstraction:
 Wraps NOX, LOCA, Rythmos, Stokhos,

MOOCHO solvers
Constructed with: modelEvaluator, paramList
Calculates sensitivities
Can be used to construct Piro::Analysis layer

With Piro, you can select all these through a
parameter list:

a)  Optimization of transient problem
b)  UQ of a steady problem
c)  Least-squares fit of bifurcation problem POC: Andy Salinger

 agsalin@sandia.gov

35

“Skins”
  PyTrilinos provides Python access to Trilinos packages

  Uses SWIG to generate bindings.

  Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and

NewPackage are supported.

  WebTrilinos: Web interface to Trilinos

  Generate test problems or read from file.

  Generate C++ or Python code fragments and click-run.

  Hand modify code fragments and re-run.

  Will use during hands-on.

POC: Jim Willenbring jmwille@sandia.gov

POC: Bill Spotz spotz@sandia.gov

36

Whirlwind Tour of Packages
Frequently Requested Discretizations Methods Core Solvers/

Preconditioners

37

AztecOO
  Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…
  Incomplete factorization preconditioners

  Aztec is the workhorse solver at Sandia:
  Extracted from the MPSalsa reacting flow code.
  Installed in dozens of Sandia apps.
  1900+ external licenses.

  AztecOO improves on Aztec by:
  Using Epetra objects for defining matrix and RHS.
  Providing more preconditioners/scalings.
  Using C++ class design to enable more sophisticated use.

  AztecOO interfaces allows:
  Continued use of Aztec for functionality.
  Introduction of new solver capabilities outside of Aztec.

POCs: Mike Heroux, Alan Williams, Ray Tuminaro
 {maherou,william,rstumin}@sandia.gov

38

Teko
(not released yet)

  Facilitates implementing “block” preconditioners
  Target applications are multiphysics systems

  Implemented preconditioners
  Block 2x2 LU Multiplicative
  Block Gauss-Seidel LSC (Navier-Stokes)
  Block Jacobi SIMPLE (Navier-Stokes)
  Additive

   Can use Trilinos solvers/preconditioners for sub solves
   Can convert monolithic system into blocked system
  Can be used by Aztec and Belos
  Can use ML, Ifpack

POC: Eric Cyr (eccyr@sandia.gov)

Full Vertical  
Solver Coverage

Bifurcation Analysis
 LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems

AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra
 Epetra

Tpetra

Optimization

MOOCHO

Unconstrained:

Constrained:

Nonlinear Problems
 NOX
Se
ns

iti
vi

tie
s

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)

40

Trilinos / PETSc Interoperability

  Epetra_PETScAIJMatrix class
  Derives from Epetra_RowMatrix
  Wrapper for serial/parallel PETSc aij matrices
  Utilizes callbacks for matrix-vector product, getrow
  No deep copies

  Enables PETSc application to construct and call virtually any
Trilinos preconditioner
  ML, Ifpack, AztecOO, …
  All Trilinos options immediately available via parameter lists

  ML accepts fully constructed PETSc KSP solvers as smoothers
  Fine grid only
  Assumes fine grid matrix is really PETSc aij matrix
  Complements Epetra_PETScAIJMatrix class

•  For any smoother with getrow kernel, PETSc implementation should be *much*
faster than Trilinos

•  For any smoother with matrix-vector product kernel, PETSc and Trilinos
implementations should be comparable

41

Trilinos Integration into an
Application

Where to start?
http://trilinos.sandia.gov

Obtaining & Building Trilinos
  Source available from trilinos.sandia.gov/download
  Configuration requires cmake, version 2.8 (www.cmake.org)

  Example: enable ML package, ML examples, all optional packages:

  cmake fine-grain control
  User can configure just those packages she wants
  Can activate tests and/or examples on per-package basis.

  Many, many more cmake options ….

  More help:
  trilinos.sandia.gov/Trilinos10CMakeQuickstart.txt
  Many configure scripts in trilinos-10.4.0-Source/sampleScripts

42

cmake \
-D CMAKE_INSTALL_PREFIX:PATH=“${PWD}\” \

-D Trilinos_ENABLE_ML:BOOL=ON \
-D Trilinos_ENABLE_EXAMPLES:BOOL=ON \

/home/jhu/trilinos-10.4.0-Source

serial
cmake \
-D CMAKE_INSTALL_PREFIX:PATH=“${PWD}” \

-D Trilinos_ENABLE_ML:BOOL=ON \
-D Trilinos_ENABLE_EXAMPLES:BOOL=ON \

-D TPL_ENABLE_MPI:BOOL=ON \
-D Trilinos_EXTRA_LINK_FLAGS:STRING="-lgfortran" \
/home/jhu/trilinos-10.4.0-Source

parallel

Linking Your
Application with Trilinos

 Once Trilinos is built, how do you link against the application?

 There are a number of issues:

 Library link order:
-lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

 Consistent compilers:
g++, mpiCC, icc, …

 Consistent build options and package defines:
g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

 Answer: Export Makefile system

Why Export Makefiles are Important
  Release 10.4 has 47 packages.
  As new package dependencies (especially optional ones) are

introduced, more maintenance is required by top-level packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

A top level package like NOX must either:
• Account for the new libraries in its configure script (not scalable)
• Depend on direct dependency packages to supply them through

“export” Makefiles.

New Library New Library

Export Makefile in Action

Example Makefile that builds “NOX_1DFEMNonlinear” example outside of Trilinos

Set the Trilinos install directory

TRILINOS_INSTALL_DIR = /home/jhu/Trilinos/trilinos-release-10-4-branch/sandbox-nox-mpi

Include any direct Trilinos library dependencies - in this case only nox

include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.NOX

COMPILE_FLAGS = $(NOX_CXX_FLAGS) $(NOX_INCLUDE_DIRS)

TPL => "Third Party Library"

LINK_FLAGS = $(NOX_LIBRARY_DIRS) $(NOX_LIBRARIES) $(NOX_TPL_LIBRARY_DIRS) $(NOX_TPL_LIBRARIES)

 $(NOX_EXTRA_LD_FLAGS)

Build your application code ##

NOX_epetra_1DFEMNonlinear_Example.exe: Example.o Basis.o Problem_Interface.o FiniteElementProblem.o

 $(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -o NOX_epetra_1DFEMNonlinear_Example.exe Example.o Basis.o
Problem_Interface.o FiniteElementProblem.o $(LINK_FLAGS)

Basis.o: Basis.C

 $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c Basis.C

Example.o: Example.C

 $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c Example.C

FiniteElementProblem.o: FiniteElementProblem.C

 $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c FiniteElementProblem.C

Problem_Interface.o: Problem_Interface.C

 $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c Problem_Interface.C

clean:

 \rm -f *.o *.exe *~

46

Concluding Remarks

47

Trilinos Availability / Information
  Trilinos and related packages are available via LGPL.

  Current release (10.4) is “click release”. Unlimited availability.
  Next release: September 2010.

  Trilinos Awards:
  2004 R&D 100 Award.
  SC2004 HPC Software Challenge Award.
  Sandia Team Employee Recognition Award.
  Lockheed-Martin Nova Award Nominee.

  More information:
  http://trilinos.sandia.gov

  7th Annual Trilinos User Group Meeting was November 2009 @ SNL
  talks available for download

  Next TUG is November 2010 at Sandia/Albuquerque. Contact Jim
Willenbring (jmwille@sandia.gov) if you are interested in attending.

What’s new in Trilinos 10.4
  July/2010 release includes 47 packages
  1st release packages

  Ctrilinos – provides C bindings for Trilinos C++ packages. Target audience is Fortran
application developers.

  Globipack – collection of scalar-only globalization code to support line searches
  Optipack – Thyra-based ANA optimization algorithms, e.g., nonlinear CG algorithms

  Makefile export system under cmake
  Makes linking against Trilinos easier

48

Useful Links

Trilinos website: trilinos.sandia.gov

Trilinos tutorial: code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial

Trilinos mailing lists: trilinos.sandia.gov/mail_lists.html

Trilinos User Group (TUG) meetings:
 trilinos.sandia.gov/events/trilinos_user_group_2009
 trilinos.sandia.gov/events/trilinos_user_group_2008

49

